
To deprecate or to simply drop operations?
An empirical study on the evolution of a large

OpenAPI collection

Fabio Di Lauro ID , Souhaila Serbout ID , Cesare Pautasso ID

fabio.di.lauro@usi.ch,souhaila.serbout@usi.ch,c.pautasso@ieee.org

Software Institute, USI, Lugano, Switzerland

Abstract

OpenAPI is a language-agnostic standard used to describe Web APIs which sup-
ports the explicit deprecation of interface features. To assess how APIs evolve
over time and observe how their developers handle the introduction of breaking
changes, we performed an empirical study on a dataset composed of more than
one million API operations described using OpenAPI and Swagger format. Our
results focus on detecting breaking changes engendered by operations removal
and whether and to which extent deprecation is used to warn clients and de-
velopers about dependencies they should no longer rely on. Out of the 41,627
APIs considered, we found only 263 (0.6%) in which some operations are dep-
recated before being removed, while the developers of 10,242 (24.6%) of them
directly remove operations without first informing their clients about the poten-
tially breaking change. Furthermore, we found that only 5.2% of the explicit-
deprecated operations and 8.0% of the deprecated-in-description operations end
with a removal, suggesting a tendency to deprecate operations without remov-
ing them. Overall, we observed a low negative correlation between the relative
amount of deprecated operations and the age of the corresponding APIs.

1 Introduction

Web APIs evolve in different ways (e.g. introduce/alter/refactor/remove end-
points) and for a multitude of reasons [4, 5, 10]. The extension of an API by
adding new features is usually a safe operation, which does not affect exist-
ing clients. Conversely, when API maintainers need to remove or alter existing
functionalities [2, 11], and consequently introduce breaking changes, they should
guarantee the stability of their offerings [6] for example announcing those mod-
ifications well in advance in order to make clients aware of possible abnormal
behaviours of their applications, in case they will not update them [5].

The goal of this study is to determine whether and to which extent Web API
maintainers make use of deprecation [7] to announce future potentially breaking
changes. One may expect that such practice is well established, given the wide
and growing adoption of HTTP-based APIs across the industry.

https://orcid.org/0000-0001-6982-9851
https://orcid.org/0000-0002-8144-2606
https://orcid.org/0000-0002-2748-9665

2 Fabio Di Lauro et al.

To assess whether this is indeed the case, we analyze a large collection of
Web APIs [1] described using OpenAPI [8], because of its growing industry
adoption [3, 9] and its support for explicit deprecation metadata.

In particular, we aim to answer the following research questions:
Q1: How do API operations evolve over time? How stable are they?
Q2: How often an operation is declared deprecated before its removal?
Q3: Does the amount of deprecated operations always increase over the API

commit histories?
Overall, we found high stability of API operations over time and that the

number of deprecated operations shows a positive correlation with the API age
only for a subset of the collected API histories. After mining the operation state
model from all observed API changes, we measured that the majority of removed
operations had not been deprecated before their removal. This unexpected result
requires further study to determine whether it is due to the relative novelty of
the deprecation metadata or to a lack of explicit API evolution guidelines and
tools to enforce them.

The rest of this paper is structured as follows. Section 2 presents an overview
of the dataset used in this study. Section 3 shows our results and we discuss
them in Section 4. Section 5 summarizes related work. We conclude our study
and indicate possible future work in Section 6.

2 Dataset Overview

We mined GitHub from December 1st, 2020 to December 31th, 2021 looking
for YAML and JSON files, which comply with the OpenAPI [8] standard spec-
ification, in order to retrieve API descriptions artifacts. The mining activity
produced a total of 271,111 APIs with their histories contained in a total of
780,078 commits. We built a tool, hereinafter called crawler, that mines those
artifacts and saves associated metadata (commits timestamp, API title, versions,
and others), and validates their compliance with Swagger and OpenAPI stan-
dards using the Prance and open-api-spec-validator tools, and finally parse them
and extract relevant information for this study. After the validation process, we
obtained a dataset of 166,763 valid APIs from which we removed 17,059 APIs
with duplicate histories. Subsequently, we removed 12,645 APIs with no opera-
tions defined in their histories. This data cleanup resulted in 137,059 APIs with
at least one operation and 41,627 unique APIs with valid descriptions, at least
one operation, and more than one commit in their history.

3 Results

3.1 Deprecation Detection

In this study we distinguish two types of deprecation: i) explicit-deprecation in-
troduced at operations, parameters and schema levels through the dedicated dep-
recated field, defined from OpenAPI 3.0; ii) deprecation-in-description, detected

To deprecate or to simply drop operations? 3

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0
10
20
30
40
50
60
70
80
90
100

Ŷ = −0.00719X + 13.65582, R2 = 0.02458

Days since the first commit

ϕ
d
e
p

c
(%

)
213

commits

11927 commits

r = −0.156792123

Fig. 1. Deprecated operations ratio φdep
c vs. API relative age: Does the presence of

deprecated operations increase over time?

analyzing descriptions fields written in natural language. The latter heuristic
is implemented by matching a list of terms, formed by words which start with
the prefix deprecat-, against the text of description fields. This is similar to the
detection heuristic of the earlier study by Yasmin et al. [12].

We detected 5,586 APIs which contain explicit-deprecated components and
384 APIs which have deprecation-in-description components. Out of these, only
165 APIs make use of both techniques to annotate deprecated components.

3.2 Operation Stability over Time

To assess the relative amount of deprecated operations we define the indicator:

φdep
c =

|Odep
c |

|Oc|
where: Odep

c ⊆ Oc (1)

Oc := { op | op is an operation detected in the commit c }
Odep

c := { dop | dop is a deprecated operation detected in the commit c }

Fig. 1 shows how the indicator φdep
c changes depending on the commit age

(relative to the first commit timestamp of the API history). The dots color shows
how many commits we found with the same φdep

c at the same age. Considering
all commits of all APIs together, we can observe a very small negative correlation
rage between the two variables. More in detail, we computed the same correlation
ragei separately across each API history i. In Fig. 2 we present the histogram
showing the distribution of the < φdep

c , age> correlation over 466 APIs for which
it was possible to compute it. We can observe that 157 (33.7%) of the 466 APIs

4 Fabio Di Lauro et al.

-1

-0
.9

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

100

101

102

Correlation Between ϕdep
c and APIs age

#
A

PI
s

101

102

C
um

ul
at

iv
e

#
A

PI
s

Fig. 2. Distribution of the Correlation ragei over 453 API histories

analyzed have −0.1 ≤ ragei ≤ 0.1 while 251 (53.9%) of the APIs have a negative
correlation −1 ≤ ragei ≤ −0.2.

3.3 Operation state model

Based on tracking the changes occurring to all API operations for each commit,
we inferred the state model shown in Fig. 3. Once created (c), an operation1 can
change its state to deprecated (d) or removed (r). Sometimes the APIs main-
tainers can choose to reintroduce a removed operation bringing it back to a c
(reintroduce transition) or d state (reintroduce deprecated transition). We de-
fine the deprecate transition when a commit introduces an explicit-deprecation
or a deprecation-in-description for an operation. The opposite state change is
represented by the undeprecate transition which occurs when an operation is
not marked anymore as deprecated. Every state has its own self-loop transition
which represents operations that remain in the same state between two consec-
utive commits.

In Fig. 3 we count how many operations were found in each of their initial and
final states as well all the transitions between pairs of states. We measured also
that 1,188 (2.9%) APIs include reintroduce and reintroduce deprecated transi-
tions in their histories and 7,663 (10.9%) of the 70,457 operation removals are
later reintroduced.

In Fig. 4 we can observe how widely adopted are different API evolution
practices are. For 9,779 APIs, operations are only added, thus ensuring back-
wards compatibility. In 5,106 APIs, operations are only deprecated, thus avoid-
ing breaking changes. In 603 APIs, operations are only removed, thus potentially
breaking clients depending on them. A different set of 9,122 APIs adopts both
operation addition and removal, without performing any intermediate depreca-
tion. Overall, deprecated operations are found in 5,805 APIs.

1 To simplify the analysis and reduce its cost, in this section we focus at the operation
level neglecting the parameters, responses and schema levels

To deprecate or to simply drop operations? 5

c

d

r

re
in
tr
od
uc
e
de
pr
ec
at
ed

keep created

deprecate

undeprecate

remove

remove

keep deprecated

reintroduce keep removed

Number of Operations:

initial 459,593 1,887 N/A

final → created deprecated removed

391,292 c 3,787,534 758 74,120
2,136 d 113 15,050 490
68,052 r 14,515 80 624,567

Fig. 3. Operations State Model

d

r

c

5,106

603

9,779

42

170

9,122
487

Fig. 4. Number of APIs which present at least one deprecated (d), removed (r), and/or
created (c) operation in one commit of their history

We observed that 7,669 (94.8%) of the explicit-deprecated operations and 844
(92.0%) of the deprecated-in-description operations remain in the deprecated
state (d). This means that for most operations, they are not removed after being
deprecated and persist in further commits, until the last one. Excluding the
transitions which start and terminate in the same state, we counted a total
of 559,673 operation state transitions across all commits. Table 1 presents some
statistics on their duration. On average, operations get reintroduced much faster
than what it takes to remove them. Also, the longest transition from deprecated
to removed took 43.2 months. In some cases, few operations did repeatedly get
removed but also reintroduced (up to 50 times), as shown with the sub-sequences
marked with * in Table 2.

Overall, considering all of the 41,627 APIs analyzed in this study, we detected
that only 263 (0.6%) of these APIs include the removal of previously deprecated
operations for at least one commit while many more, 10,242 (24.6%) of them
directly remove operations (Fig. 5).

6 Fabio Di Lauro et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

1.6%34.7%63.6%

2635,58710,242 !d → r

d → !r

d → r

Fig. 5. Number of APIs classified based on the presence in at least one commit of their
history, for the same operation undergoing different state transitions: only deprecate
(!d → r), only remove (d → !r), or deprecated followed by remove (d → r).

Table 1. Statistics on the Time Between State Transitions

transition minimum average median maximum

created → removed 0 14.6 wks 9.5 d 67.5 mths
removed → created 0 2 mins 46.4 hrs 37.4 mths
created → deprecated 2 mins 41.9 wks 29.5 wks 50.1 mths
deprecated → created 2 mins 34.1 d 52.5 hrs 13.5 mths
deprecate → removed 0 66 d 9.8 d 43.2 mths
removed → deprecated 64 secs 15.3 d 51.4 hrs 20.6 wks

4 Discussion

Q1: How operations evolve over time? How stable are they? 384,715
(83.4%) of the initial transitions end in a created final state passing through
only one create transition. This result denotes a high stability of the analyzed
operations.

We also detect 2,114 (0.2%) operations which remain in a deprecated state
until the end of their history but only 466 operations follow the deprecate-remove
path, i.e. they conclude their lifecycle with a deprecate transition followed by a
remove. We also observe that 1,887 (0.4%) of the initial transitions lead directly
to the deprecated state, thus indicating that collection includes few artifact
histories that lack the initial created state. Furthermore, we can observe from
Table 2 that 67,577 (14.7%) operations out of the 459,593 operations that were
initially created end with a final removal of the involved operations passing
through the transitions sequences create → remove and created → removed →
(created → removed)*, i.e. with these sequences the developers could potentially
introduce breaking changes, due to the absence of the intermediate deprecate
transition.

Q2: How often an operation is deprecated before its removal?
Most operations are removed without being previously deprecated. Out of
the 67,577 removed operations, only 466 had been previously deprecated.
Furthermore, 419 (5.2%) of the explicit-deprecated operations and 73 (8.0%) of
the deprecated-in-description operations end with a removal.

To deprecate or to simply drop operations? 7

Table 2. Operations and APIs Following State Transition Sequences

Transition Sequence # Operations # APIs

created → removed 64,740 9,837
created → removed → created 4,968 1,234
created → removed → (created → removed)* 2,837 584
created → (removed → created)* 1,555 255
created → deprecated 636 262
created → deprecated → removed 60 25
created → deprecated → created 34 7

Q3: Does the amount of deprecated operations always increase over
the API commit histories? According to our measurements the number of
deprecated operations, overall, has a small negative correlation with the age
of the corresponding API description (Fig. 1). When analyzing individual API
histories, we found 59 APIs with a positive correlation between the two variables
(Fig. 2).

5 Related Work

Deprecation of Web APIs has been studied by Yasmin et al. in [12]. In this
work we are performing a broader-deeper analysis of a recently collected dataset
of larger APIs with longer change histories. Yasmin et al. collected 3,536 OAS
belonging to 1,595 unique RESTful APIs and they analyzed RESTful API depre-
cation on this dataset, proposing a framework called RADA (RESTful API Dep-
recation Analyzer). The authors filtered the dataset removing duplicate APIs,
erroneous OAS and unstable versions, resulting in 2,224 OAS that belongs to his-
tories of 1,368 APIs. In this work, we adopted the same heuristics used by RADA
and applied them to a much larger API collection. It consists on determining
which OAS components are deprecated by the providers based on the optional
boolean deprecated field and a list of keywords to be searched in components
description fields in order to identify potential components deprecation. Yasmin
et al. cluster the considered APIs within three categories: i) always-follow for
APIs which always deprecate before removing elements. ii) always-not-follow for
APIs which introduce breaking changes without any deprecation information in
previous versions; iii) mixed which contains APIs that show an hybrid behavior
of i) and ii). While Yasmin et al. consider deprecation at operation, request pa-
rameters and responses level, in our study we focus only at operation level. The
study performed by Yasmin et al. reveals that the majority of the considered
RESTful APIs do not follow the deprecate-remove protocol. Our study confirm
this conclusion, as stated in sub-section 3.3.

8 Fabio Di Lauro et al.

6 Conclusion

Do developers deprecate or simply remove operations as they evolve their APIs?
In this empirical study we found that developers follow backwards compatible
practices as they tend to grow their APIs by adding new operations. When
removing operations, however, they do not often annotate them as deprecated,
thus potentially breaking clients without previously warning them about the
operation about to be removed. Another finding is that the operation state
model reconstructed from observing API changes is a fully connected graph:
there exists at least one operation in some API in which any possible state
transition (between the created, deprecated and removed states) occurs. Further
work is needed to investigate and gain a better understanding of the reasons for
these observations, for example, by further classifying APIs based on whether
they are still being developed or they have already been deployed in production.

Acknowledgements

This work is funded by the SNSF, with the API-ACE project nr. 184692.

References

[1] Di Lauro, F., Serbout, S., Pautasso, C.: Towards large-scale empirical assess-
ment of web apis evolution. In: 21st International Conference on Web Engineering
(ICWE2021), Springer, Biarritz, France (May 2021)

[2] Hora, A., Etien, A., Anquetil, N., Ducasse, S., Valente, M.T.: APIEvolutionMiner:
Keeping api evolution under control. In: Proc. IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering (CSMR-WCRE) (2014)

[3] Karlsson, S., Čaušević, A., Sundmark, D.: Quickrest: Property-based test genera-
tion of openapi-described restful apis. In: IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST) (2020)

[4] Lauret, A.: The Design of Web APIs. Manning (2019)
[5] Li, J., Xiong, Y., Liu, X., Zhang, L.: How does web service api evolution affect

clients? In: IEEE 20th International Conference on Web Services (2013)
[6] Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U., Stocker, M.: Interface evo-

lution patterns — balancing compatibility and flexibility across microservices life-
cycles. In: Proc. 24th European Conference on Pattern Languages of Programs
(EuroPLoP 2019), ACM (2019)

[7] Murer, S., Bonati, B., Furrer, F.: Managed Evolution - A Strategy for Very Large
Information Systems. Springer (2010)

[8] OpenAPI Initiative: https://www.openapis.org/ (2022), accessed: 2022-05-11
[9] Serbout, S., Pautasso, C., Zdun, U.: How composable is the web? an empirical

study on openapi data model compatibility. In: Proc. IEEE World Congress on
Services (ICWS Symposium on Services for Machine Learning), IEEE, Barcelona,
Spain (July 2022)

[10] Sohan, S., Anslow, C., Maurer, F.: A case study of web api evolution. In: IEEE
World Congress on Services (2015)

[11] Varga, E.: Creating Maintainable APIs. Springer (2016)
[12] Yasmin, J., Tian, Y., Yang, J.: A first look at the deprecation of restful apis: An

empirical study. In: IEEE International Conference on Software Maintenance and
Evolution (ICSME) (2020)

https://www.openapis.org/

	To deprecate or to simply drop operations?An empirical study on the evolution of a large OpenAPI collection

